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Abstract
Context—Volumetric studies have reported relatively decreased cortical thickness and gray
matter volumes in adults with Attention-Deficit/Hyperactivity Disorder (ADHD) whose childhood
status was retrospectively recalled. We present the first prospective study combining cortical
thickness and voxel-based morphometry (VBM) in adults diagnosed with ADHD in childhood.

Objective—In adults who had Combined Type ADHD in childhood, to 1) test whether they
exhibit cortical thinning and decreased gray matter in regions hypothesized related to ADHD, and
2) test whether anatomic differences are associated with current ADHD diagnosis, including
persistence versus remission.

Design—Cross-sectional analysis embedded in a 33-year prospective follow-up at mean age 41.

Setting—Research outpatient center.

Participants—ADHD probands were from a cohort of 207 6–12 year old Caucasian boys; male
comparison subjects (n=178) had been free of ADHD in childhood. We obtained MRI scans in 59
probands and 80 comparisons (28% and 45% of original samples, respectively).

Main Outcome Measure—Whole-brain VBM and vertex-wise cortical thickness analyses.
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Results—Cortex was significantly thinner in ADHD probands than comparisons in the dorsal
attentional network and limbic areas (FDR<0.05, corrected). Additionally, gray matter was
significantly decreased in probands in right caudate, right thalamus and bilateral cerebellar
hemispheres. Probands with persistent ADHD (n=17) did not differ significantly from remitters
(n=26) at FDR<0.05. At uncorrected p<0.05, remitters had thicker cortex relative to those with
persistent ADHD in medial occipital cortex, insula, parahippocampus, and prefrontal regions.

Conclusions—We observed anatomic gray matter reductions in adults with childhood ADHD,
regardless of current diagnosis. The most affected regions underpin top-down control of attention
and regulation of emotion and motivation. Exploratory analyses suggest that diagnostic remission
may result from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry.

CONTEXT
Volumetric studies in children with Attention-Deficit/Hyperactivity Disorder (ADHD) have
consistently found global reductions of total brain volume with prefrontal cortex, anterior
and posterior cingulate cortex, basal ganglia, cerebellum and parieto-temporal regions
particularly affected relative to typically developing subjects.1–4 These findings are
consistent with a model of ADHD as a disorder of frontal-striatal-cerebellar circuitry. The
diagnosis of ADHD requires onset in childhood, but persistence of ADHD into adulthood is
now well documented.4, 5 This longitudinal course together with smaller brain volumes in
children with ADHD has raised questions about brain development into adulthood.

A sparse literature on brain anatomy in adults with ADHD also reports decreased volumes in
orbitofrontal cortex,6 anterior cingulate cortex (ACC),7, 8 dorsolateral prefrontal cortex
(DLPFC),9 superior frontal cortex and cerebellum.10 Complementary analyses of cortical
thickness11 reveal overall decreased cortical thickness in children11–14 and adults with
ADHD with reductions in ACC, medial frontal regions and parieto-temporo-occipital
cortex.12–14 Recently, Almeida et al.15 found cortical thinning in right frontal lobe of
children, adolescents and adults with ADHD.

Faute de mieux, investigations of structural brain abnormalities in adults have relied on
adults’ retrospective recall of their childhood status.8, 9, 16–22 The documented inaccuracies
of such reports23 highlight the advantage of assessing brain anatomy in individuals with
established childhood-onset ADHD prospectively followed into adulthood. Additionally,
clinical ADHD remits in a substantial proportion of individuals followed into
adulthood,24, 25 but the neurobiology of remission has not been previously examined in
middle adulthood.

We report cortical thickness and voxel-based morphometry (VBM) analyses on the largest
sample to date of adults with childhood ADHD diagnoses (mean age 8) consistent with
DSM-IV. Follow-up assessments occurred at mean ages 18, 25 and 41 (18FU, 25FU, and
41FU, respectively). At 18FU, a comparison group free of childhood ADHD, matched for
age, sex, ethnicity, and childhood social class was recruited.26–30 Systematic diagnostic
assessments at each follow-up were conducted by interviewers “blind” to past history and
group membership. At 41FU, we conducted anatomic brain magnetic resonance imaging in
probands with childhood ADHD and comparisons. We performed analyses based on
childhood diagnosis as well as on current diagnostic status in adulthood. Primary aims were
to: (1) test whether adults with a childhood diagnosis of Combined Type ADHD (probands),
relative to comparisons, exhibit cortical thinning and decreased gray matter in regions
hypothesized to be related to ADHD,12–14, 31 and (2) assess whether anatomic differences
are associated with current ADHD diagnosis.
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METHODS
PARTICIPANTS

The ADHD group originally comprised 207 6 to 12 year-old Caucasian boys referred to a
research clinic from 1970 to 1977 (mean age 8.3 years). Briefly, they were referred by
schools because of behavioral problems, had elevated parent and teacher ratings of
hyperactivity, IQ≥85, and a diagnosis of Hyperkinetic Reaction of Childhood.32, 33 Children
with a pattern of aggressive or antisocial behavior were excluded to rule out comorbid
conduct disorder. Further details of proband characteristics appear in previous
publications.30, 34 These subjects were assessed at mean ages 18.4±1.3, 25.0±1.3, and
41.2±2.7. Comparison male subjects (n=178) were recruited at 18FU. Medical center
pediatric charts were reviewed for children seen for routine physical exams from 1970–1977
when they were 6 through 12 years-old, group-matched for probands’ race, childhood
socioeconomic status and geographical residence. Parents of suitable children (by then
adolescents) were called, informed of the study and, if interested, recruited, provided parents
reported that no teacher had complained about their child’s behavior in elementary school.
Refusal was low (circa 5%).

ADULT-FOLLOW UP ASSESSMENT (41FU)
On average 33 years after initial childhood diagnosis, clinical data were obtained on 135
male probands (65% of original sample, 69% of those living) and 136 male comparisons
(76% of 178 recruited in adolescence, 77% of those living). Major DSM-IV disorders, as
well as multiple aspects of function, were assessed for the interval between 25FU and 41FU
by trained clinicians “blind” to all antecedent data. A special interview, Assessment of Adult
Attention Deficit Hyperactivity Disorder, was developed for diagnosing DSM-IV ADHD in
adults (see Author e-Methods and Author e-Instrument). Current ADHD was defined as
meeting DSM-IV criteria during the preceding six months. Participants were invited to take
part in an anatomical MRI study. Due to refusals and MRI exclusions (see Table 1), we
obtained MRI scans in 59 ADHD probands and 80 comparisons. Nearly all probands (n=57;
97% of those scanned) were treated with methylphenidate in childhood between ages 6 and
12, for an average of 2.2 years.35 (See Author e-Table 1 for further details of childhood
medication treatment, including thioridazine.30) All participants provided written informed
consent as approved by the NYU School of Medicine Institutional Review Board.

To test whether cortical thickness differed as a function of current ADHD, we subdivided
probands into three subgroups: 1) those who met diagnostic criteria for DSM-IV ADHD at
41FU (“persistents” n=17, including seven Predominantly Inattentive, six Predominantly
Hyperactive/Impulsive, and four Combined Type); 2) those who did not (“remitters” n=26);
and 3) those diagnosed with ADHD Not Otherwise Specified (“ADHD-NOS” n= 16; see
Author e-Methods). Comparisons were dichotomized into subjects who did not meet criteria
for any type of ADHD (“non-ADHD comparisons” n=57) and those who were diagnosed
with ADHD-NOS (“comparisons with ADHD” n=23). Although all probands and all
comparisons were included in initial vertex-wise and VBM analyses, subgroup analyses
focused on current diagnostic status. Accordingly, probands and comparisons with current
ADHD-NOS, which is not well-defined and did not differ between groups (27% and 29%,
respectively), were excluded from subgroup analyses.

IMAGING
Anatomic T1-weighted images were obtained on a 3T Siemens Trio with an 8-channel
Siemens head coil (41 scans; 20 ADHD probands, 21 comparisons) and a 3T Siemens
Allegra with a Siemens single channel head coil (98 scans; 39 ADHD probands, 59
comparisons; proportions did not differ significantly across scanners, (χ(1)

2=0.96, p=0.33)
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with the following parameters: TR=2100ms; flip angle=12; slice thickness=1.5mm;
inversion time=1100ms; matrix=192×256; FOV=172.5mm. The only parameter that differed
was TE, which was 3.87ms on the Trio and 3.90ms on the Allegra.

Structural MRI scans were preprocessed through the fully automated CIVET-MNI
pipeline.36–39 The initial preprocessing step was to mask MRI native images using an
automated brain extraction method.40 Data were corrected for non-uniformity artifacts and
registered to stereotaxic space (MNI152) using a 9-parameter linear transformation. Voxel-
wise tissue type classification was performed using a neural network classifier followed by a
partial volume estimation step.38, 41

For VBM, the classified tissue maps were blurred with a Gaussian kernel of 10mm full
width at half-maximum. Cortical thickness measures were assessed using a fully automated
algorithm which defines the distances between a set of vertices at the white matter (WM)
surface and then expands outward to find the intersection with GM in order to generate
surface meshes that represent WM and GM interfaces.42 A total of 40,962 linked vertices
were calculated per hemisphere. Each individual cortical thickness map was blurred using a
30mm surface-based diffusion-smoothing kernel to reduce noise while preserving
anatomical location, as this method produces less volumetric blurring than the equivalent
Gaussian kernel.43

STATISTICAL ANALYSES
Global cortical thickness—We obtained a single global cortical thickness value for each
subject by averaging across all 81,924 vertices. Linear regression models controlled for age
at time of scan and scanner model (Trio vs. Allegra).

Vertex-wise and voxel-based morphometry analyses—Following the study aims,
group analyses tested for regional differences in cortical thickness and GM density between
(1) all adults with a childhood diagnosis of Combined Type ADHD and all comparisons;
(2a) persistents versus non-ADHD comparisons; (2b) remitters versus non-ADHD
comparisons; and (2c) persistents versus remitters. For each comparison, we regressed
cortical thickness at each of 81,924 vertices or whole-brain GM density on group,
controlling for age at time of scan and scanner model. The software package
‘mni.cortical.statistics’ (Brain Imaging Centre of the Montreal Neurological Institute) for the
R environment44 was used for cortical thickness analyses and the FMRIB Software Library
(FSL, www.fmrib.ox.ac.uk)tool Feat, for VBM. Results were thresholded using a false
discovery rate (FDR) of 0.05.45, 46 Maps of t-statistics for group effects on cortical thickness
at each vertex or GM density at each voxel were projected onto an average brain template
revealing clusters that differed significantly between groups. We retained clusters
comprising at least 50 contiguous vertices for cortical thickness47 and five voxels for VBM.

Region-based analyses of cortical thickness and voxel-based morphometry—
To test whether childhood or current ADHD was associated with significant differences in
specific regions, we performed post-hoc region-of-interest (ROI)-based analyses. For each
participant, we computed mean cortical thickness or GM density within each cluster
exhibiting significant (FDR<0.05) group differences in primary analyses by averaging
across all vertices or voxels within each cluster. We then compared the diagnostic subgroups
of probands (persistents, remitters) and the comparisons without current ADHD, Bonferroni
corrected for the number of clusters. For completeness, Author e-Table 2 contains means
and SD for the subgroups with current ADHD-NOS.
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Exploratory analyses of cortical thickness—To further investigate primary
hypotheses for which no FDR<0.05 vertices were found, we reexamined subgroup
differences heuristically using an uncorrected p<0.05 threshold with a cluster threshold of 50
vertices.47 Because of significant between-group differences in IQ, we confirmed cortical
thickness results by also adjusting for IQ.

RESULTS
Table 1 summarizes the derivation of the sample. A larger proportion of comparisons (45%
of originally enrolled participants) than probands (29%) had analyzable MRI scans. This
discrepancy reflects a significantly higher rate of unavoidable factors in probands (27%)
(i.e., deaths, incarcerations and MRI exclusions) than in comparisons (12%) (χ2

(1)=12.08,
p<0.001). By contrast, rates of refusal, failure to schedule or to locate subjects did not differ
significantly (45% of probands versus 43% of comparisons). Accordingly, results are based
on anatomic images from 59 ADHD probands and 80 comparisons.

We compared diagnoses and demographic information at 18FU of subjects who were
scanned and those who were not (data available for 57/59 probands and all comparisons; see
Author e-Table 3). Within both proband and comparison groups, individuals scanned and
those not scanned did not differ significantly on prevalence of ADHD, Antisocial
Personality Disorder, mood or anxiety disorders, any DSM-III disorders, age at referral, IQ,
socioeconomic status, or Teacher Conners Hyperactivity Factor score. However, scanned
probands had significantly higher rates of alcohol substance use disorder (SUD), non-
alcohol SUD, and any SUD than probands who were not scanned (Author e-Table 3)

DEMOGRAPHICS
Probands and comparisons did not differ significantly in age at scan, or in lifetime
prevalence of substance abuse or dependence (see Table 1). As expected, probands and
comparisons differed significantly in IQ in childhood and 41FU assessments. See Author e-
Table 5 for demographics of subgroups based on current diagnosis. Current substance use
and comorbid diagnoses are presented in Author e-Table 5.

GLOBAL CORTICAL THICKNESS
Surface-wide, mean cortical thickness was significantly lower in probands (n=59) than
comparisons (n=80) (mean ± SD 3.18±0.11mm and 3.24±0.11mm, respectively; p<0.001 in
regression controlling for age and scanner; Cohen’s d=0.54). At 41FU, probands with
persistent ADHD differed significantly from non-ADHD comparisons (3.14±0.13mm and
3.25±0.10mm, respectively; p=0.0005; d=1.02). The remitters (3.20±0.11mm) also differed
from non-ADHD comparisons in overall cortical thickness (p=0.04, d=0.48). However,
persistents and remitters did not differ significantly (p=0.10, d=0.51).

VERTEX-WISE ANALYSES OF CORTICAL THICKNESS
Figure 1A displays the multiple clusters of vertices (detailed in Table 2) for which the cortex
was significantly thinner (surface-wide FDR<0.05) in ADHD probands; the largest cluster
extended from right precuneus to precentral gyrus. Other right hemisphere clusters were
located in inferior parietal lobe, temporal pole, and insula. Left hemisphere clusters were
located in superior frontal gyrus/frontal pole, precentral gyrus, insula, temporal pole, and
cuneus. There was no instance in which cortical thickness was significantly increased in
probands. As shown in eFigure 1 and Author e-Table 6, after covarying for IQ (in addition
to scanner and age), significant cluster centers remained largely unchanged in location, but
the clusters were less extensive.
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In order to assess associations with current ADHD diagnosis, we performed vertex-wise
comparisons among the different diagnostic subgroups. The 17 individuals with persistent
ADHD differed significantly from the 57 non-ADHD comparisons in most but not all the
regions identified in the initial inclusive analyses (see Table 2 and Figure 1B). Additionally,
this analysis revealed thinner cortex related to persistent ADHD in the left medial occipital
cortex and right subgenual ACC. Using FDR<0.05, remitters (n=26) did not differ
significantly from non-ADHD comparisons; persistents and remitters also did not differ in
any region at this threshold. There were no vertices at which cortical thickness was
significantly associated with lifetime or current substance abuse diagnoses, dimensional
measures of substance abuse, lifetime smoking history, or thioridazine treatment, nor were
there any significant interactions between group and scanner for any cortical or VBM
measures.

REGION-BASED ANALYSES OF CORTICAL THICKNESS
To examine potential differences associated with remission from childhood ADHD, we
focused on the clusters in which ADHD probands exhibited significantly thinner cortex than
comparisons (FDR<0.05). Both remitters and persistents had thinner cortex than non-ADHD
comparisons, with medium to large effect sizes. Average effect sizes between persistents
and non-ADHD comparisons (d=0.73) were larger than for remitters (d=0.52), although all
confidence intervals overlapped (not shown); persistents and remitters did not differ
significantly from each other in any cluster at FDR<0.05 (see Table 2).

EXPLORATORY VERTEX-WISE ANALYSES
When vertex-wise results were thresholded at p<0.05 (uncorrected), we observed thinner
cortex for persistents versus remitters in insula, bilateral temporal cortex including right
temporal pole and in left occipital Brodmann area (BA) 19, orbitofrontal cortex and medial
ACC (see Figure 2, Author e-Table 7). There were no regions exceeding our cluster size
threshold of 50 vertices in which remitters exhibited thinner cortex than those with persistent
ADHD.

EXPLORATORY REGION-BASED ANALYSES
In the clusters that differentiated persistents from remitters in exploratory vertex-wise
analyses, persistents differed markedly from non-ADHD comparisons (average d=0.75),
whereas remitters did not (average d=0.03; t(9)=8.26, p<0.0001). Relative to comparisons,
remitters had (non-significantly) greater cortical thickness in left superior temporal gyrus
extending to insula and orbitofrontal cortex, left parahippocampus, left ACC, and left medial
occipital cortex (see Author e-Table 7).

VOXEL-BASED MORPHOMETRY
As shown in Table 3 and Figure 3, GM density was significantly greater (FDR<0.05) for
comparisons than for probands in many of the same regions identified through cortical
thickness analyses as well as in subcortical regions inaccessible to cortex-based measures.
Figure 4 displays decreased GM in probands in right caudate, right thalamus and bilateral
cerebellar hemispheres. VBM analyses of diagnostic subgroups or of medication treatment
in childhood with methylphenidate or thioridazine did not yield significant results even with
more lenient thresholds (FDR≤0.2).

COMMENT
In a prospective 33-year longitudinal follow-up of 59 probands (mean age 41 years) with
established ADHD in childhood and 80 prospectively enrolled non-ADHD comparisons, we
found an overall significant reduction in mean cortical thickness in probands. Beyond this
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global difference, the greatest cortical thinning associated with childhood ADHD was
located in bilateral parietal lobes, temporal poles, insula, precentral gyri, frontal poles, and
right precuneus. No cortical region was significantly thicker in probands than comparisons.
Although less sensitive,48 VBM also revealed significantly decreased GM in probands
versus comparisons in right precentral, bilateral parietal, left temporal, and right cuneus.
Additionally, VBM detected decreased GM in probands in caudate, thalamus and cerebellar
hemispheres.

With respect to current adult diagnosis, probands with persistent ADHD differed most from
non-ADHD comparisons in the same cortical regions identified in our primary analyses, as
well as in additional clusters in left medial occipital cortex and subgenual ACC. Probands
with remitted ADHD did not differ significantly from persistents when analyses were
corrected for full-brain comparisons. In exploratory uncorrected analyses, probands with
persistent ADHD exhibited reduced cortical thickness relative to remitters in bilateral medial
occipital lobes, temporal lobes extending to insula, and left parahippocampus.

Our results extend prior volumetric and cortical thickness findings in ADHD. First,
consistent with decreased total cerebral volume in ADHD,2–4 our observation of reduced
global cortical thickness in probands with ADHD confirms prior reports.13, 14, 20

Furthermore, although we found less frontal and prefrontal cortical thinning in ADHD than
others,12–15, 20, 49 we confirmed thinner cortical mantle in occipito-parietal,12, 13, 20

temporal cortex and precentral regions13, 14 in ADHD. In subcortical analyses, we also
confirmed anatomic abnormalities in caudate,3, 50, 51 thalamus52, 53 and cerebellum3 in
ADHD.

Studies of cortical thickness in adults with ADHD have focused on specific regions
associated with executive function and attentional control.54, 55 Makris et al.9 selected nine
parcellation units (from 48) per hemisphere and found thinner cortex related to ADHD in
prefrontal and cingulate cortex and inferior parietal lobe, albeit without correcting for
multiple comparisons.9 A cross-sectional study of children, adolescents and adults found
that individuals with ADHD, regardless of age, had significantly thinner right superior
frontal cortex than controls.15 In the adults with ADHD, the specific reduction, with
correction for multiple comparisons limited to the frontal lobe, was localized to BA9. In
contrast, we did not find group differences in much of prefrontal cortex but found
widespread cortical thinning in bilateral parietal-temporal cortex. We found similar results
in analyses that included all participants as well as in those limited to probands with
persistent ADHD versus non-ADHD comparisons. The latter contrasts are comparable to
studies in adults that define group membership by current diagnostic status.15, 20

Studies of cortical thickness in children with ADHD are more numerous than those in
adults,12–14, 33, 47, 56, 57 and typically have examined the entire cerebrum, although nearly all
(except14) report results uncorrected for multiple comparisons. Thinner cortex has been
reported in children with ADHD in prefrontal and precentral regions12, 14 parietal and
temporal lobes12, 13 and inferior frontal gyrus bilaterally.58 In our main analyses, we applied
FDR full-brain correction for multiple comparisons, and observed significant differences
whether groups were defined by initial childhood history or by current adult diagnoses. We
speculate that the robustness of our results reflects having established the diagnosis of
ADHD in childhood as well as our medium to large sample sizes.

Broadly, our results implicate disruptions in large-scale neural systems involved in the
regulation of both attention and emotion in adults with childhood ADHD. We found
convincing converging anatomic evidence implicating the dorsal attentional network55 and
distributed regions within limbic circuits that were thinner in ADHD probands than in
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comparisons. Similar findings were obtained when we contrasted probands with persistent
ADHD versus comparisons without ADHD. However, we failed to observe hypothesized
group differences in prefrontal regions.1, 3 Below we discuss our main findings and non-
findings in turn.

First, we found widespread thinner cortex and decreased GM density in bilateral parietal and
precentral regions, overlapping areas of the dorsal attentional network. The bilateral dorsal
network, which mediates goal-directed, top-down executive control processes, interacts with
a right-sided ventral system (stimulus-driven, bottom-up) during attentional functioning,1, 55

particularly in redirecting attention. The core areas constituting the dorsal attentional
network include the intraparietal sulcus and the conjunction of the precentral and superior
frontal sulcus (frontal eye fields)55 which were particularly affected in the ADHD probands.
Strikingly, we also observed significantly thinner cortex in precuneus and superior parietal
lobe, which along with the dorsal network core regions are implicated in top-down
processing of shifting of attention.59 These findings are consistent with studies of ADHD
that report abnormal patterns of activation in parietal regions52 during working
memory,60–62 attentional63–65 or response inhibition tasks.66, 67

We also found occipital cortical thinning in probands with persistent ADHD versus non-
ADHD comparisons. Occipital cortex has been recently found to interact with the dorsal
network in maintaining attention59 and in suppressing responses to irrelevant stimuli.68, 69

Individuals with ADHD are easily distracted when required to ignore extraneous
signals.70, 71 Top-down control deficits when responding to irrelevant stimuli are associated
with impaired working memory.72, 73 Abnormal activation of occipital cortex has been
found in youth74 and adults75–77 with ADHD during working memory tasks. Similarly, in a
meta-analysis of functional imaging studies, children and adolescents with ADHD showed
activation decreases in left middle occipital gyrus (BA19) compared to controls.52

Additionally, a recent VBM study in adults with ADHD found significant bilateral reduction
of GM volume only in early visual cortex.78

Our VBM analysis revealed cerebellar, thalamic and striatal GM deficits in ADHD.
Cerebellar involvement in ADHD is well-established, with findings in children reported
mostly in the vermis,1–4, 79 and in the hemispheres in adults, as in this sample.60, 80, 81 Early
anatomical studies of ADHD did not specifically examine thalamic nuclei, although
thalamic hypoactivation emerged in an unbiased meta-analysis.52 Recently, several studies
have identified thalamic abnormalities in children/adolescents53, 82 and adults with
ADHD.83, 84

Second, our analyses revealed thinner cortex in probands, and particularly those with
persistent ADHD, across multiple limbic regions such as temporal poles (BA38), insula
(BA13) and subgenual ACC (BA25). The insula and ACC play important roles in
sensorimotor, emotional and cognitive function.85, 86 Specifically, subgenual ACC is
implicated in emotional processing and pain perception.87 In humans, subgenual ACC is
functionally connected with multiple limbic regions including temporal poles88 and insula.89

In turn, the insula, along with participating in performance of demanding tasks,90 is clearly
also related to affective processing.91 Abnormal activations in insula and subgenual ACC
were reported in a meta-analysis of ADHD functional imaging.52

Cortical thickness studies in ADHD have downplayed findings in the temporal pole, which
have been reported but not discussed.12–14 The temporal pole (BA38) is classified as a
paralimbic region, based on its interconnections with both amygdala and orbitofrontal
cortex, and is implicated in social and emotional processes.92 Altered activation in temporal
pole is associated with deficits in face recognition93–100 and mentalizing, i.e., theory of
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mind.101–104 The temporal poles have been proposed as a channel for the integration of
emotion and perception, playing an important role in both emotional and social functions.92

Our findings are consistent with pathophysiological models of ADHD highlighting not only
cognitive executive functions (“cool” processes) but also emotion/motivational deficits
(“hot” processes).105 Anatomic “spiraling” circuits begin with emotion/motivation pathways
which influence “cool” cognitive processes, which in turn control motor responses.106 We
observed thinner cortex in regions subserving both emotional regulation (temporal pole,
insula, parahippocampus and subgenual ACC) and top-down attentional regulation (dorsal
attentional network and medial occipital cortex). Further, our exploratory analyses suggest
that thinner cortex and diminished gray matter in the dorsal attentional network and limbic
relay regions is related to the trait of having had ADHD in childhood, regardless of current
diagnostic status.

Third, the lack of proband-comparison differences in prefrontal cortex or ACC was
unexpected.8, 9, 17, 20, 21 To better understand possible differences between persistents and
remitters, we performed uncorrected exploratory analyses. In regions in which we found
suggestive differences, we observed remarkable congruence between remitters and controls
in left superior temporal gyrus, ACC, parahippocampus, and occipital cortical thickness as
well as in thalamus and cerebellum gray matter density. We cannot rule out that remitters
may have differed from persistents in these regions since childhood, but the most
parsimonious explanation is offered by the hypothesis that remission entails compensatory
processes12, 107 underpinned by prefrontal cortical maturation. While we found supporting
evidence for ACC and orbitofrontal involvement in diagnostic remission of ADHD, our data
also suggest superior temporal, medial occipital and thalamo-cerebellar involvement in
remission.

Our findings must be interpreted in light of several limitations. First, despite our prospective
longitudinal design, we examined brain imaging data only cross-sectionally in middle
adulthood. Nevertheless, this is the largest sample of children with ADHD followed into
adulthood, obviating the unreliability of retrospective recall of childhood symptoms.
Additionally, we report on the largest sample to date of adults with confirmed childhood
ADHD who had remitted. We were able to analyze imaging data from only 28% of initially
diagnosed probands with ADHD and 45% of comparison subjects. However, these probands
and comparisons did not differ from the original sample, and the probands studied did not
differ significantly from those excluded on nearly all clinical and demographic variables,
except for significantly higher rates of substance use disorders at 18FU in scanned probands.
Nevertheless, we did not observe significant relationships between brain anatomic measures
and substance use disorders. Finally, as is generally the case, our probands had significantly
lower IQ than comparisons both in childhood/adolescence and adulthood. The issue of
whether to covary for IQ in disorders such as ADHD is not settled.108 As shown in eFigure
1 and Author e-Table 7, our principal findings of persistent differences in brain anatomy
survived covarying for IQ even with conservative full-brain correction.

We were surprised by the rate of ADHD-NOS diagnosed in comparisons, which was
comparable to the rate in probands. We speculate that secular changes in the general public’s
awareness of ADHD may have contributed. While we cannot rule out instrument-related
error (see Author e-Instrument), using similar approaches did not yield high rates of ADHD
symptoms in comparisons in two previous “blind” assessments.24, 26 Nevertheless, analyses
excluding ADHD-NOS did not alter results appreciably.

Subjects were limited to Caucasian males, since the number of originally diagnosed females
with ADHD was too small for meaningful statistical comparisons. Thus our results may not
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generalize to ADHD in women or to other racial or ethnic groups. However, this constraint
avoided potential confounds from possible sex, ethnic, or socioeconomic differences.
Exclusion of conduct disorder comorbidity (see Author e-Text) in childhood also averted
confusion as to the origin of the deficits found in cortical thickness or GM density.

We cannot comment on cortical thickness or GM density in ADHD in the absence of
medication treatment, as all but four of the scanned probands were treated with
methylphenidate as children. We also did not detect significant effects of childhood
treatment with stimulants or thioridazine in cortical thickness or VBM analyses. Medication
treatment has been reported to affect cortical thickness47 although the durability of such
effects is unknown, and treatment had been discontinued for all subjects for several decades.

For logistical reasons, we used two scanners. Fortunately, scans were approximately
counterbalanced across probands and comparisons, and there were no significant main
effects or interactions related to scanner type. Secondary analyses (see eFigure 2) also
showed that we obtained comparable results when we examined only the 98 scans obtained
on the Allegra scanner. Finally, the analyses presented here were limited to cortical
thickness and VBM; ongoing analyses will examine white matter structure using diffusion
tensor imaging.

In conclusion, in this first study of childhood ADHD prospectively examined in adulthood,
we found thinner overall cortex in probands with childhood ADHD that was even more
pronounced in those with persistent ADHD. Beyond this global effect, we also detected
significant reductions in cortex thickness in parietal, temporal and posterior frontal regions
corresponding to the dorsal attentional network and limbic areas. These findings were
largely echoed by VBM, which additionally highlighted decreased GM in caudate. These
regions underpin top-down control of attention and the regulation of emotion and motivation
and were comparably diminished in probands with remitted ADHD or persistent ADHD.
Thus these differences seem to primarily reflect the childhood diagnosis of ADHD. By
contrast, remitters tended to differ from persistents in medial occipital cortex, temporal pole,
insula, orbitofrontal cortex, parahippocampus, frontal pole, and subcortically in cerebellum
and thalamus. This supports the suggestion that symptom amelioration and diagnostic
remission may result in part from compensatory maturation of frontal thalamic cerebellar
circuits.107, 109
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Figure 1.
(A) t-map of the significant cortical thinning in probands with ADHD (n=59) compared to
comparisons (n=80). (B) t-map of the significant cortical thinning in probands with
persistent ADHD (n=17) compared to non-ADHD comparisons (n=57). False Discovery
Rate (FDR) threshold depends on the data and is different for the right and left hemispheres.
Here the t-statistics at the lowest FDR threshold are projected across each hemisphere for
each comparison.
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Figure 2.
Exploratory uncorrected analyses (p<0.05) reveal regions in which remitted probands
(n=27) exhibit thicker cortex than probands with persistent ADHD (n=17). See Author e-
Table 7 for peaks and coordinates of clusters.
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Figure 3.
Comparisons (N=80) exhibit greater gray matter density (left) and cortical thickness (right)
in the bilateral dorsal attentional network than probands (n=59) with childhood combined
type ADHD. Images are in radiological convention, right is left and left is right.
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Figure 4.
Voxel-based morphometry reveals that comparisons (N=80) exhibit significantly greater
gray matter density (FDR <0.05) in right ventral caudate, right thalamus, bilateral
cerebellum than probands (n=59) with childhood combined type ADHD. Images are in
radiological convention, right is left and left is right.
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Table 1

Derivation of MRI Sample and Demographics

ADHD Male Probands N (%) Male Comparisons N (%)

INITIAL SAMPLE 207 (100) 178 (100)

Unable to locate 21 (10) 20 (11)

Deceased 15 (7) 5 (3)

Incarcerated 6 (3) 1 (1)

Refused MRI 43 (21) 34 (19)

Not evaluated prior to termination of funding 29 (14) 22 (12)

SUBTOTAL-AVAILABLE FOR SCAN 93 (45) 96 (54)

MRI Exclusions:

Size (too large for scanner) 17 (8) 6 (3)

Claustrophobic 7 (3) 3 (2)

Metal contraindications 3 (2) 1 (1)

Failed scan quality criteria 7 (3) 6 (3)

TOTAL NUMBER WITH USABLE DATA 59 (29) 80 (45)

DEMOGRAPHICS* Mean (SD) Mean (SD) t P (2-tailed)

Age at Follow-Up (Years) 41.1 (2.7) 41.3 (3.1) 0.51 0.61

Socioeconomic Status** at Follow-Up 3.37 (1.1) 2.48 (1.0) 5.01 0.001

Educational Attainment† 13.5 (2.4) 15.6 (2.3) 5.31 0.001

WAIS Full Scale IQ at 18FU 104(13) 113(13) 3.58 0.001

WASI Full Scale IQ at 41FU 101 (13) 110 (15) 3.42 0.001

Global Assessment Scale Rating*** 63.4 (12.5) 71.4 (10.5) 4.05 0.001

*
All ADHD probands and comparisons: Caucasian

**
Hollingshead and Redlich (1958) scale, based on the participant’s education and occupation.

†
Highest Grade Completed WAIS: Wechsler Adult Intelligence Scale. Obtained for 39 (66%) of the 59 Probands and all Comparisons.

WASI: Wechsler Abbreviated Scale of Intelligence. Obtained on 54 (92%) of the 59 Probands and 73 (91%) of the 80 Comparisons.

***
Completed by the “blind” clinician that conducted the mental status and diagnostic assessments.
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